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SUMMARY

An absorbing boundary condition is formulated and applied to the one-dimensional open channel flow
equations in conjunction with an explicit MacCormack scheme. The physical flow domain has been
truncated by introducing an artificial pseudo-boundary. By using an appropriate boundary condition on
a truncated domain, it is shown that, for flow containing shocks, the solution can be accelerated to its
stationary profile with no loss of accuracy. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical modeling of flow in open channels often involves computational domains that are
very large. Discretizing the entire computational domain and solving the flow equations turns
out to be a tedious task, both in terms of computational time and the corresponding memory
requirements. For flows where steady state solutions are sought, the large domain taxes the
computational resources, as the steady state profiles are obtained by solving the time-
dependent flow equations over a large time period. In this approach, which is also known as
the false transient approach, time is used as an iteration parameter. To alleviate the above
problems an alternative is to translate the known boundary condition onto a pseudo
boundary, which results in a smaller computational domain. Decreasing the size of the
computational domain helps in accelerating the convergence of the solution to steady state.
Figure 1 illustrates the above discussion. The total flow domain V of length L is truncated by
placing an artificial boundary (B–B) at length L1 from the upstream boundary. The effective-
ness of such an approach primarily depends on how well the boundary condition at B–B
relates to the physical boundary at A–A.

This paper begins by discussing the boundary conditions at section A–A before relating
them to those at section B–B. Specifying proper boundary conditions is an important aspect
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Figure 1. Schematic representation of the new flow domain.

in any numerical investigation. Overspecifying or underspecifying the flow variables will result
in incorrect flow values [1,2]. The exact number of boundary conditions to be specified at the
end nodes depends on the nature of the flow. By using the method of characteristics, one can
show that for supercritical flows (Fr\1, with Fr indicating the Froude number), all flow
information needs to be specified upstream (Figure 2). Hence, for one-dimensional computa-
tions the two flow variables are specified at the upstream end and none at the downstream end
[2]. The variables at the downstream end are obtained by interpolating them from interior
nodes. For subcritical flows (FrB1), one boundary condition at both the upstream and the
downstream ends need to be specified. The other variable is compared using the relevant
characteristic equation. The number of boundary conditions required for different flow
configurations is documented in Table I.

In this investigation, the focus is on steady profiles for flows accompanied with shocks, as
these are considered to be critical in testing the effectiveness of the absorbing boundary
condition at section B–B [3–5]. Shocks in open channels, broadly known as hydraulic jumps,
arise whenever supercritical flow reverts to subcritical flow (see Figure 3). Because the flow is
subcritical at the downstream end of the physical domain, one flow condition needs to be
specified. An ideal boundary condition at B–B should satisfy the following criteria: (i) the
boundary condition should be compatible with the physics of the problem, (ii) the new
boundary should not degrade the solution, and (iii) the boundary should absorb the outgoing
wave to avoid any waves being reflected back into the flow domain. Failure to satisfy the first
two conditions could result in an incorrect solution. A reflecting boundary (violating condition
(iii)) could result in a larger number of computational steps for the disturbance to be

Figure 2. Characteristic curves in x-plane.
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Table I. Nature of flow and required boundary conditions.

One-dimensional flowsLocation Two-dimensional flows

Subcritical Supercritical Subcritical Supercritical

Upstream 1 2 2 3
1Downstream 0 1 0

Figure 3. Schematic representation of hydraulic jump.

dissipated. The length at which the boundary B–B is placed (i.e., L1) needs a special mention.
For example, if the flow conditions dictate the formation of stationary discontinuity at a
distance L2 from the upstream end, then in the process of truncating the flow domain, the
boundary B–B should be placed beyond L2 from the upstream end. In addition, to maintain
the accuracy of the solution, the boundary B–B should be placed some distance away from the
discontinuity region. In particular, the gradients of flow variables near the boundary should be
small. The placement of the artificial boundary is covered in greater detail below (see the
discussion relating to Figure 5).

The objective of the this work is to obtain a satisfactory radiating boundary equation, also
known as a ‘non-reflecting’ or ‘absorbing’ boundary condition, for open channel flow
equations. The use of an appropriate boundary condition at the pseudo-boundary aids in
reducing the size of the computational domain, thus accelerating the solution to steady state.
It should allow the wave to propagate outside of the computational domain without generating
any reflections back into the domain. A satisfactory equation yields an approximate solution
in the truncated domain, coinciding with the exact solution over the unbounded domain. In
deriving the absorbing boundary equation, use has been made of the structure of the outgoing
wave and a normal mode analysis [3]. To the knowledge of the authors, no other work has
been done in the field of computational hydraulics, thus they present the derivation of the
absorbing equation for these flow equations in greater detail. Finally, to make this document
self-contained, all numerical aspects are briefly presented.

2. GOVERNING EQUATIONS

For a rectangular channel, the basic governing equation based on the continuity and
momentum principles can be written in conservation form as [2]

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 641–656



S. A. YOST, P. RAO, AND R.M. BROWN644

ht+ (hu)x=0 (1)

(hu)t+
�

hu2+
gh2

2
�

x

=gh(S0−Sf) (2)

where h is the flow depth, u is the flow velocity, g is the acceleration due to gravity, S0 is the
bed slope of the channel and Sf is the frictional slope, computed using Manning’s equation and
written as

Sf=
m2u �u �

R4/3 (3)

Here m is the Manning roughness coefficient and R is the hydraulic radius (ratio of area of
flow to wetted perimeter). The definition sketch identifying some of the flow variables is
illustrated in Figure 4.

3. NUMERICAL SCHEME

Since we are focussing on boundary issues, we have selected the established finite difference
MacCormack scheme for solving Equations (1) and (2). Note that any shock capturing scheme
from the family of total variation diminishing (TVD) or essentially non-oscillatory (ENO)
schemes can be used since the present boundary formulation is independent of the numerical
technique. With the application of the MacCormack scheme to free surface flows being well
documented [2,6,7], we only outline the smoothing procedure that has been used to stabilize
the solution near the shock [8]. This smoothing technique, which is also known as ‘artificial
viscosity’, aids in arriving at a smooth profile. Since we are using the MacCormack scheme, we
have used the procedure originally suggested by Jameson et al. [9]. In this approach, the flow
variable ( f in this discussion, which can be depth or discharge) is smoothed as

f i
n+1= f i

n+1+ji+1/2( f i+1
n+1− f i

n+1)−ji−1/2( f i
n+1− f i−1

n+1) (4)

Figure 4. Definition sketch.
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where

ji=
�hi+1−2hi+hi−1�

�hi+1�+2�hi �+ �hi−1� (5)

ji+1/2=m max(ji, ji+1) (6)

The solution obtained by Equation (4) is free from any oscillations. The smoothing
mechanism (Equation (5)) is triggered only in oscillatory regions. For regions where the flow
is uniform, the numerator in Equation (5) goes to zero, leaving the solution undistributed. The
parameter m in Equation (6) is a dissipation constant that controls the degree of smoothing.
The magnitude of which is determined by numerical testing.

The choice of time step is governed by the Courant–Friedrich–Lewy (CFL) stability
condition [10], and is given by

Dt=Cn

Dx

max(�u �+
gh)
(7)

where Cn is the Courant number, and Dx is the grid spacing. With known grid spacing and
flow conditions, the time step can be evaluated using Equation (7).

4. TEST PROBLEM

Before moving the discussion to the formulation of the appropriate absorbing equation at
section B–B (see Figure 1), we present the salient features of the test problem. As mentioned,
the proposed formulation has been tested for flow accompanied with discontinuities. In an
open channel flow application, this includes hydraulic jumps. Due to its practical importance,
numerical simulation of hydraulic jumps continues to draw the research interest of modelers in
the hydraulic community [2,11–13].

The experimental results of Gharangik and Chaudhry [11] have been used as our benchmark
solution. The initial conditions in the 14 m long horizontal channel (S0=0) are a flow depth
of 0.043 m and a flow velocity of 2.737 m s−1. These flow conditions result in a Froude
number (Fr) of 4.23. At time t=0+, the unsteady computations are started by increasing the
depth at the downstream end (similar to closing a gate) to 0.22 m, and the simulation
continued until the solution converges to steady state for these flow conditions. This particular
combination of flow conditions causes a hydraulic jump where the flow changes from
supercritical (Fr\1) to subcritical (FrB1).

All the studies reported [11–13] have simulated this problem by solving the flow equations
over the entire domain (i.e., channel length of 14 m). In the present work, the flow domain is
truncated to half of the original length (L1=7 m), and an appropriate absorbing boundary
condition was placed at this new downstream boundary. The equation that relates the flow
variables at these two boundaries is known as the absorbing boundary condition, which is
derived next.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 641–656
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5. ABSORBING EQUATION

At the outset we note that the mathematical theory for hyperbolic conservation laws is not
completely understood (see Reference [5], p. 438). In particular, we do not know if uniqueness
can be established for the boundary condition (Equation (8)) derived below. Thus, we rely on
heuristic techniques and computational results to justify this boundary condition. Next, we
note that we are interested in the case when the Froude number at the artificial boundary is
less than one. Thus, we need to impose one boundary condition there. The boundary condition
that we use is

ht−
c
g

ut+a(h−h( )= −c(S0−Sf) (8)

where c=
gh is the celerity of the wave and a is a parameter to be chosen, as discussed
below.

Justification in the use of Equation (8) in the light of the properties it should possess (see
Section 1) can be obtained from the work of Engquist and Majda [14]. Starting the discussion
from the lowest level of abstractness, Hedstrom [15] gives the following boundary condition
(written for our problem), which is similar to Equation (8):

ht−
c
g

ut= −c(S0−Sf) (9)

This is plausible because the quantity h− (cu)/g is the characteristic variable for the outgoing
wave. However, Equation (9) is not useful because it does not incorporate the downstream
height h( . The equation provided by Rudy and Strikwerda [3] incorporates this information by
appending the term a(h−h( ). They attempt to choose a value of a by taking the system of
equations in non-conservation form, freezing the Jacobian at constant values and examining
the exponential solutions for the resulting system. If one considers the following:

h. =h−h( , û=u− ū (10)

with the boundary conditions

û(0, t)=0 (11)

and

h. t= (L*, t)−
'h(

g
ût(L*, t)+ah. =0 (12)

then, according to Rudy and Strikwerda, the most rapid decay is achieved if
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a=
c2− ū2

3.59cL*
(13)

The choice of L* in our investigation was based on the maximum length of the interval
where u= ū and h=h( are valid. In the numerical code, this was achieved by keeping track of
the shock profile evolution as a function of time and grid node. Having tracked the location
of the discontinuity, L* is the length of the channel between the discontinuity and the
downstream end. This is the maximum length where the flow tends to be uniform so that û and
h. are small. Even for flows with shocks there exists a substantial flow domain where the flow
variables are close to constant. The basic assumption of flow in this region is that the pressure
distribution is hydrostatic. Basco [16] has numerically shown that the contribution of non-
hydrostatic pressure distribution is significant only in the regions containing the shock and is
minimal in regions away from it. The numerical results of Gharangik and Chaudhry [11] and
Rahman and Chaudhry [12] also substantiate the above statement.

Note that Rudy and Strikwerda’s equation is not yet appropriate for our problem. This is
because Equation (12) is not satisfied by the steady state solution since for our case
h. = (h−h( )"0. Thus, we observe that the right-hand term of momentum equation (Equation
(2)) is a slope term. Hence, one could expect

(h−h( )= −L0 (S0−Sf) (14)

Adding this heuristic boundary condition gives a=c/L0 , where L0 is the distance from
artificial to physical boundaries (L0 =L−L1 in Figure 1). The celerity, c, is introduced to make
the equation dimensionally homogenous.

We remark that a different explanation for the right-hand side can be given by considering
the linearized system

�h.
û
�

t

+
�ū h(

g ū
��h.

û
�

x

=
�0

F
�

(15)

where g(S0−Sf) is assumed to be constant, denoted by F. Then, the solutions of this system
are easily seen to be

�h.
û
�

=8+(x−C+t)
�
h/g

1
�

+Ft+8−(x−C−t)
�
h( /g

−1
�

(16)

where 8+ and 8− are arbitrary real functions. If we assume that for the incoming wave,
8− =0, then the solution satisfies the boundary condition

h. t−
'h(

g
ût= −

'h(
g

F= −c(S0−Sf) (17)

Now adding the term a(h−h( ) gives the boundary condition found in Equation (8).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 641–656
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6. APPLICATION

As mentioned before, we have selected flows with shocks to validate the present formulation.
Since the location of discontinuity is sensitive to the boundary condition, we feel this type of
flow serves as a critical code validation test for the radiating boundary equation. A grid
spacing of 0.23 m, Manning’s roughness coefficient of 0.0085, a Courant number of 0.4, and
a dissipation constant (m in Equation (6)) of 0.5 were used in this investigation. Readers who
are interested in the experimental methodology are referred to Gharangik and Chaudhry [11].

Since the flow is supercritical at the upstream end (x=0), the flow variables were kept
constant at their initial values. At the downstream end the boundary conditions could be
applied in one of three ways, including

1. extrapolation of flow variables from the interior node;
2. using a constant flow depth, compute the velocity using the C+ curve from the governing

equation; or
3. using the proposed non-reflection equation (Equation (8)).

The physics of the problem dictate that one flow variable must be specified at the
downstream end; hence the first approach is incorrect. The second approach is valid in a
subcritical flow simulation. The information that is supplied by the C− curve is replaced with
the known flow variable or physical relation. However, when we truncate the flow domain, we
do not know the flow information at the new downstream end (i.e. section B–B in Figure 1).
Had the steady state solution been known a priori (which is never the case), the second
approach can be applied at our new boundary. Equating the value of flow variables at the end
of the physical domain (at x=L) to the pseudo-boundary (at x=L1) is inconsistent and could
lead to incorrect solutions. Hence, an appropriate boundary value at the pseudo-boundary is
needed. We use Equation (8) to determine it. It should be noted that the linearized equations
were solved only at the boundary node, and the conservation form of the equations (Equations
(1) and (2)) was solved over the rest of the domain. In the following discussion, the flow was
assumed to have reached steady state if

%
NG

i=1

1
NG


(hi
n+1−hi

n)25o=10−9 (18)

with NG indicating the total number of grid nodes in the computational domain.
Figure 5 shows the location of the steady state profile with and without the absorbing

boundary. When computing the profile without the absorbing boundary equation, the down-
stream boundary was placed at x=L=14 m. Coupled with the given boundary depth of 0.043
m, the flow velocity was computed using the C+ equation of Equations (1) and (2). If K
represents the last grid note, the C+ equation can be written as [2]

uK
n+1=uK−1

n −
8


ghK−1
n

(hK
n+1−hK−1

n )−gDtSf (19)
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Figure 5. Steady state profiles for Fr=4.23: (a) normal view; (b) zoom view, — without absorbing
boundary (L1=14 m), – – – with absorbing boundary (L1=7m); �, experimental [11].

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 641–656
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To test the efficiency of the absorbing boundary condition the flow domain was truncated
to x=L1=7 m. The boundary condition (i.e., known flow depth at 14 m) was translated to
the new boundary using Equation (8). Figure 5 indicates that the flow profile obtained using
the present absorbing boundary equation is in close agreement with the characteristic solution
of the whole domain. As previously mentioned, constricting the size of the flow domain aids
in reducing the computational effort and expense. In addition, the close agreement of the
absorbing solution with the experimental data reinforces the reliability of Equation (8). The
steady state value of a, as obtained using Equation (13), was 0.216. Taking this magnitude as
the base value we varied a by 950% and performed the simulation again. The sensitivity of
the profiles to a is plotted in Figure 6. The plot shows that lower values of a tend to give an
incorrect location of the discontinuity. Figure 7 is the plot of relative error (RE) as a function
of a. When computing the RE we had taken the solution obtained by running the code over
the whole domain (L1=14 m) as the base solution, since we did not know the analytical
solution. Extensive runs conducted for values of a above that given by Equation (13)
(a\0.216) did not affect the location of the stationary discontinuity. Hence, we conclude that
Equation (13) gives that threshold value of a. Furthermore, varying a had no effect on the
spurious oscillations that rise near the discontinuity. As previously mentioned, these oscilla-
tions are a characteristic feature of the numerical scheme and are not related to the absorbing
boundary condition. In conjunction with Equation (13), we have mentioned that the other
possible values of a are given as a=c/L0 . Since for the present investigation, L0 =7m and
c=1.47 m s−1 (
gh( ), the magnitude of a is equivalent to 0.21.

When plotting Figure 5, we had placed the pseudo-boundary at x=7 m. We had selected
this length based on the assumption that the steady state hydraulic jump is located within the
first 7 m. If this assumption is wrong and the discontinuity is located outside L1, the present
methodology fails to generate a reliable result. Selecting an appropriate truncated domain is
difficult, as the steady state solution is not known a priori. Thus, a better mechanism is
required for determining the length at which the flow domain can be truncated. Had the
location of the steady state jump been known before hand, then the selecting a suitable L1

turns out to be an easier task. Given all boundary conditions, the choice of appropriate L1 is
elusive. Solving the idealized linear equations will produce a location for the stationary wave.
However, the presence of the non-linear source term makes such an approach a difficult task.
We are not aware of any analytical approach that can be used for determining the optimum
length of L1. Hence, we see this as a limitation in implementing an absorbing boundary
condition.

The effect of the Courant number on the location of the shock front is summarized in Table
II. The interest was confined to the regions in the vicinity of the discontinuity. The numbers
indicate that for a wide range of Courant numbers, the jump forms between 1.63 and 1.866 m.
Computations were made for different flow conditions (i.e., Froude numbers) to observe a
similar trend as indicated in Figures 5–7 and Table II. To conserve space, we have presented
the results of one flow condition.

Finally, we apply the absorbing boundary technique for channels with non-rectangular
cross-section to illustrate the applicability to more general channels. Specifically, channels with
trapezoidal and triangular cross-sections are used. The continuity and momentum equations
for the channels of interest can be written as

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 641–656
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Figure 6. Effect on a on the location of jump: (a) normal view; (b) zoom view, — a=0.22 (Equation
(13)), – – a=0.11, – · – 0.32; �, experimental [11].

At+Qx=0 (20)

Qt+
�Q2

A
+gI

�
x

=gA(S0−Sf) (21)
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Figure 7. Effect of a on RE.

Table II. Effect of Courant number on shock location.

1.16Cn ¡ x� 1.40 1.63 1.866 2.10

5.2E−2 6.7E−2 9.6E−20.1 0.14 0.18
4.9E−2 6.6E−2 1.0E−20.4 0.16 0.20
5.0E−2 7.6E−2 0.120.7 0.19 0.21

0.9 5.0E−2 7.9E−2 0.13 0.20 0.22

where A is the wetted cross-sectional area, Q is the flow rate, I is the hydrostatic pressure force,
g is the acceleration due to gravity, S0 is the bed slope, and Sf is the friction slope. The
hydrostatic pressure force can be expressed as

I=
& h(x, t)

0

(h−h)b(x, h) dh (22)

where in h is the water depth, h is the integration variable indicating distance from the channel
bottom, and b(x, h) is the channel width at distance h from the channel bottom

b(x, h)=
(A(x, h)
(h

(23)

Using the method of characteristics, one can show that the outgoing wave for Equations (20)
and (21) has the form [2]

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 641–656
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ht−
c
g

ut= −c(S0−Sf) (24)

where the celerity of the wave is c=
gA/T, in which T is the top width of the flow. For
channels with a rectangular cross-section, Equation (24) is identical to Equation (17), and
c=
gh. At this stage we like to note that the absorbing boundary formulation is solely
dependent on the form of the outgoing wave. Given the fact that Equations (17) and (24)
are similar, the discussion presented in Section 5 can be extended to any cross-sectional
channel. Hence, one can arrive at the appropriate boundary equation at the pseudo-down-
stream end by adding the term a(h−h( ) to the left-hand side of Equation (24). Numerical
verification shows this to be true.

The geometric features of the trapezoidal cross-sectional channel are channel length=14
m, bottom width=0.5 m, side slope=1:1, and roughness coefficient=0.0155. The initial
conditions are a flow depth, h=0.043 m and discharge, Q=0.053 m3 s−1. These flow
conditions result in an upstream Froude number of 4.0. The hydraulic jump was created by
increasing the flow depth at the downstream end at t=0+ to 0.122 m. To check the
present formulation we had compared the flow profiles with and without the absorbing
boundary. In the former case, the solution was computed for the whole domain at all time
periods. When using the absorbing boundary, the domain was truncated at x=7 m and
Equation (8) applied at this pseudo-downstream boundary. Figure 8 depicts the depth
profiles for the two simulations. The magnitude of a at steady state, given by Equation (13)
was 0.0711. The close agreement between the two profiles indicates that the cross-sectional
shape is no limitation for applying the absorbing equation.

The initial conditions in the triangular channel are a flow depth, h=0.1 m and dis-
charge, Q=0.023 m3 s−1. These conditions resulted in a Froude number of 5.4. The depth
at the downstream end at t=0+ was increased to 0.3. The slope of the channel sides in
the 14 m long horizontal channel is 0.6:1 (i.e., 0.6 horizontal to 1 vertical). A value of
0.015 was used as the Manning roughness coefficient, and the Courant number was set to
0.8. Figure 9 illustrates the depth profiles obtained with and without truncating the domain.
In the latter, the domain was truncated at x=7 m. The close agreement between the two
profiles reinforces the previous conclusion. Since the channels is real world are often non-
rectangular, we hope that the present study will stimulate the interest of absorbing
boundary techniques among hydraulic modelers.

We conclude this discussion by sharing our thoughts on extending the present application
to higher-dimensional flows. For many problems, an accurate simulation requires solving
two- and three-dimensional open channel flow equations. Numerical studies have been
reported for flow in a converging/diverging channel, flow in bends and flow over a spur
dyke. The application of an absorbing boundary equation depends primarily on the nature
of flow at the downstream end (given by the local Froude number) and on the geometry of
the truncated domain. We assume that the flow is subcritical downstream because supercrit-
ical flow dictates that any downstream boundary equation/condition is invalid due to the
upstream control. Additionally, the physical geometry in the truncated domain is assumed
to be regular. All the above mentioned flows have a localized irregular domain, wherein the

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 641–656



S. A. YOST, P. RAO, AND R.M. BROWN654

Figure 8. Steady state profiles for trapezoidal channel (Fr=4.0): (a) normal view, (b) zoom view, —
without absorbing boundary (L1=14 m), – – – with absorbing boundary (L1=7 m).

flow is strongly two-dimensional, and a fairly large regular domain wherein the geometry
contributes little to the physics of flow. Noting this, the researchers who have studied these
flows [13,17,18] have assumed the flow downstream to be one-dimensional. With this

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 641–656
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Figure 9. Steady state profiles for triangular channel (Fr=5.4): (a) normal view; (b) zoom view, —
without absorbing boundary (L1=14 m), – – – with absorbing boundary (L1=7 m).

hypothesis, their results are in close agreement with the experimental results. Correlating their
findings to this work, the extension to multi-dimensional applications seems somewhat
straightforward, but is left for future research.

7. CONCLUSIONS

For a set of one-dimensional open channel flow equations with source terms, this paper deals
with the application of an absorbing boundary condition. The associated boundary equation
transfers the flow information from the actual physical boundary to a pseudo-boundary
located within the flow domain. The applicability of this procedure was tested on flows with
discontinuities. The observed results are in agreement with numerical and reported experimen-
tal results. The use of the absorbing boundary leads to a faster convergence of the solution to
steady state, while leaving the location of the stationary wave undisturbed. The limitations in
this formulation are (i) the location of the pseudo-boundary must be assumed independent of
the steady state location of the discontinuity, and (ii) the geometry of the domain in the
truncated region has no significant effect on the solution (i.e., pseudo-one-dimensional). The
approach outlined in this work will be explored for higher-dimensional flows in future work.
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